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I .  
NATIONAL ~0NAU"ICS AND SPACE ADMINISTRATION 

TECHNICAL NOTE D-150 

APPROXIMATE SOLUTIONS TO OPTIMUM CLIMBING TRAJECTORY 

FOR A ROCKET-POWEmD AIRCRAFT 

By Angelo Miele and James 0. Cappellari, Jr. 

SUMMARY 

The climbing program of a rocket-powered aircraft is analyzed with 
regard to minimum time trajectories. By using the indirect methods of the 
calculus of variations it is shown that, if the centripetal acceleration 
is neglected In the equations of motion, the totality of extremal arcs 
is composed of a number of constant patn inclination subarcs plus one 
variable path inclination subarc. 
function, a solution in a closed form is obtained for the variable path 
inclination subarc. 

Under suitable hypotheses for the drag 

For certain types of drag polars the variable path inclina.tion sub- 
arc may split into several branches, one of which is subsonic, one tran- 
sonic, and one supersonic. With regard to minimum time trajectories only 
the subsonic and the supersonic branch are of interest; the transition 
path from the former to the latter branch is studied and its optimum con- 
figuration analytically predicted. 

The boundary-value problem is considered. Methods are developed 

The effect of important design 
for connecting the subarcs resulting from the Euler equations into the 
extremal arc minimizing the climbing time. 
parameters, such as wing loading or  thrust loading, on the solutions is 
investigated. 

IKr!?RODUCTION 

Several new problems of applied mathematics have arisen in the 
analysis of trajectories of high-speed aircraft which cannot be handled 
by the use of conventional methods of performance analysis. 
Froblems is the determination of the optimum climbing technique from one 
combination of altitude and velocity to another. 

One of these 

In the years preceding the second World War, the optimum climbing 
program of piston-engine airplanes was investigated by assuming that the 
motion of the center of gravity of the aircraft is locally straight and 
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'd uniform. With the above hypothesis substantial simplifications were 
made possible, leading to simple analytical relationships of great useful- 
ness for design purposes. 

For the case of a jet-propelled aircraft, on the other hand, it 

Thus, 
becomes important to account for the inertia terms because of the high 
velocity of flight and its rapid variation with the altitude. 
the analysis of the optimum climbing technique shifts from the domain 
of the ordinary theory of maxima and minima into the realm of the cal- 
culus of variations. 

'vll 

1 
The authors are indebted to Mr. Carlos R. Cavoti, Instructor at 1 

Purdue University, for his cooperation in some of the analyses associated 
with the present report. 5 

SYMBOLS 

speed of sound, ft see'' 

function defined by equation (48) 

area of exit section of engine, ft 

constant defined by equation (49) 

function defined by equation ( 5 0 )  

drag coefficient 

2 

lift coefficient 

drag, lb 

induced drag, lb 

fundamental function defined by equation (9) 

functions defined by equations (61) to ( 6 5 )  

acceleration of gravity, ft sec-2 

flight altitude, ft 

VZ energy height, ft, h + - 
2g 
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nondimensional constant 

first members of equations representing constraints of 
variational problem 

ratio of induced drag coefficient to square of lift coefficient 

lift, lb 

instantaneous mass of aircraft, lb ft-lskc2 

Mach number, V/a 

quantity defined by equation (41) 

atmospheric pressure, lb ft'2 

pressure in exit section of engine, lb ft'* 

air constant, ft*sec-2 OR-' 

reference surface, ft2 

1 

time, sec 

thrust, lb 

flight velocity, ft sec-1 

average velocity of gases in exit section of rocket, ft sec-1 

derivative of air temperature with respect to altitude, 
OR ft'l 

engine mass flow, lb ft-lsec 

ratio of specific heat at constant pressure to specific heat 
at constant volume 

variation consistent with prescribed end conditions 

parameter 

path inclination with respect to a horizontal plane 

Lagrange multipliers 

absolute density of air, lb fte4sec2 

absolute temperature of air, OR 

nondimensional mass, a 
POS 
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# function defined by equation (B3), lb-l 

JI function defined by equation (B4), 1b-bec-l 

function defined by equation (B6), lb-lft see'' 

function defined by equation (B20), lb-lsec-l 

cu 

n 

Superscript : 

( 9  derivative with respect to time 

Subscripts : 

i initial condition 

inc incompressible flow condition 

f final condition 

0 sea-level condition or zero-lift condition 

T transition 

* condition at tropopause 

- condition immediately before corner point 

+ condition immediately after corner point 

OBJECT OF PRESENT RESF&7C" 

Preliminary variational studies by several authors, among others, 
Cicala and Miele (refs. 1 to 3)  and Behrbohm (ref. 4), have shown that 
for an aircraft flying in a vertical plane the optimum paths are con- 
trolled by nonlinear systems of differential equations which are inte- 
grable, in general, only by approximate methods. Nevertheless, by 
making suitable assumptions, solutions in a closed form can be obtained 
in special cases. Up to the moment when a better understanding of the 
general problem is reached, these approximate solutions must be con- 
sidered as an indispensable tool in the hand of the aeronautical engi- 
neer, in view of their practical Fmportance as far as the preliminary 
design is concerned. 
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In this connection, it is to be noted that the need for an entirely 
new, though simplified, approach to the study of the optimum climbing 
technique of an aircraft was first emphasized in a paper by Lippisch 
(ref. 3 )  which was carried out as a consequence of the pioneering develop- 
ment of jet-propelled aircraft in Germany during World War 11. Even 
though the above research left the bulk of variational questions asso- 
ciated with the climbing flight substantially unsolved, Lippisch's paper 
threw considerable light on a new class of problems of the mechanics of 
flight. 

In the years following the second World War the problem of the opti- 
mum climbing program attracted considerable interest and was initially 
solved by assuming that the mass of the aircraft is ideally a constant 
(this is approximately the case with a turbojet aircraft) and the centri- 
petal component of the acceleration is disregarded, accounting only for 
the tangential component. Thus, approximate solutions were detected by 
Miele (refs. 6 to 9) who made use of Green's theorem and by Lush (ref. 10) 
whcse graphical-analytical method w-s based OE the concept of energy 
height. In recent times, the results which Miele indicated in refer- 
ence 6 were rederived by Cartaino and Dreyfus (ref. 11) along the lines 
of the promising theory of dynamic programming, as developed by Bellman 
(ref. 12). 

For the case where the timewise variation of mass is important, 
that is, for a rocket-powered aircraft, the simplified investigation of 
reference 13 is to be mentioned. The present study is an extension of 
the theory of reference 13 and is a preliminary part to a general research 
program carried out under the sponsorship and with the financial assist- 
ance of the National Advisory Committee for Aeronautics. A rocket- 
powered aircraft operating at constant engine mass flow is considered 
and the induced drag is accounted for in the general treatment. 
cal methods are developed for predicting the optimum path of flight, 
valid f o r  the case where both the zero-lift drag coefficient and the ratio 
of induced drag coefficient to square of lift coefficient are arbitrarily 
specified functions of the Mach number. 

Analyti- 

For certain types of drag polar the existence of two regions of 
best climb, one subsonic and the other one supersonic, is possible. A s  
a consequence, a logical question is to determine the altitude at which 
the transition from subsonic climb to supersonic climb must be operated. 
Several analytical techniques are presented to handle the above question. 
Furthermore, methods are developed f o r  combining the subarcs resulting 
from the Euler equations into the optimum configuration for minimum 
time of flight. 
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FUNDAMENTAL HYPOTHESES AND EQUATIONS OF MOTION 

Hypotheses 

The following hypotheses are used throughout the paper: 

(1) The rocket-powered aircraft is ideally regarded as a particle 
of mass m variable with time t. 

- 
(2) The small angle between the thrust vector T and the velocity 

vector v is neglected. 

( 3 )  The aerodynamic lag is disregarded, that is, lift L and drag 
D forces are calculated as in unaccelerated flight. 

(4) The centripetal component of the acceleration is not considered. 

( 3 )  The motion of the propellant in the piping system, in the com- 
bustion chamber, and in the nozzle is steady with respect to a reference 
frame rigidly connected with the solid part of the aircraft. 

(6) Only flight paths contained in a vertical plane are investigated. 

In view of hypotheses (1) and (2) the equation of motion on the 
tangent to the flight path is written as follows: 

D - T  
J1 V + g sin 8 + - - 0  - m 

In addition, the kinematical relationship in the vertical direction' is 
given by : 

J2= h - V sin 8 = 0 (2) 

where h denotes altitude above sea level. 

With regard to the drag function, the hypothesis ( 3 )  leads to a 
general expression of the form: 

'The kinematical relationship in the horizontal direction I s  not 
written here, since the horizontal distance does not appear anywhere in 
the variational problem formulated in the following sections. However, 
this relationship may be used a posteriori to calculate the horizontal 
distance flown, once the optimum path configuration has been determined. 

v 
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even accounting for compressibility and viscosity effects on the polar; 
on the other hand, effects of a thermal nature are not considered in 
the present idealized scheme. 

The thrust of the rocket engine is written as: 

where p is outside atmospheric pressure. 

Since p, Ve, and pe are constant (hypothesis (3 ) )  and since 
p = p(h) ,  one concludes that the modulus of the thrust vector is only 
altitude dependent. In turn, the mass m is a linear function of the 
time: 

m = q - Pt = m(t) ( 5 )  

the subscript i denotes initial condition of flight ti = 0. 

Approximate Estimation of the Induced Drag 

Some comment is here supplied about the form of the equation of 
motion on the normal to the flight path, used in the present report. 
As is known, the exact configuration of the above equation is: 

L - m(g cos e + vi )  = o ( 6 )  

Attention should now be focused on the interaction between equations (1) 
and (6). 
V, 8, and 6 .  In turn, lift, velocity, and altitude determine the 
induced drag Di 
the aircraft. 
the drag D can be analytically represented as: 

The latter determines the lift required for given values of 

thereby enabling one to calculate the total drag of 

t, 

Once the lift is eliminated from equations ( 3 )  and ( 6 ) ,  

D = D(t,h,V,B,i) (7) 

Now all the difficulties in treating present variational problems 
are essentially associated with the complicated configuration of the 
drag function. Solutions which are of immediate usefulness from an 
engineering point of view can only by achieved by renouncing equation (7) 
and by replacing it with a simpler analytical form, more specifically 
D = D(t,h,V). This circumstance, in turn, Implies that, to the effect 
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of predicting the optimum distribution of speeds versus time, equation (6) 
is to be abandoned and the following simplified form used in its place: 

.t 

J 3 = L - H m g = O  (8) 

where H is a constant. Clearly, two approximations are embodied in 
equation (8), hypothesis (4) and the fact that the variable term 
is replaced with a kind of average value 

cos 8 
H, where 0 5 H d 1. 

From a conceptual point of view, the use of equation (8) in place 
of equation (6) is justified in all cases where the induced drag is small 
with respect to the zero-lift drag. 
hypothesis is sound along a reasonable portion of the optimum path as 
the subsequent analysis shows. 

For a rocket-powered aircraft this 

Among all the values which one may attribute to the constant H, 
two have a special importance, H = 1 and H = 0. As a matter of fact, 
by setting H = 1 one overestimates the lift, thereby overestimating 
the induced drag. On the other hand, by setting H = 0, the opposite 
situation arises since the drag reduces to the zero-lift drag. Assuming 
that the centripetal acceleration is negligible, the optimum trajectory 
is, in all probability, somewhat intermediate between the two limiting 
ones calculated for H = 1 and H = 0. 

VARIATIONAL FORMULATION 

The set of equations (l), (2), and (8) is now considered where 
D = D(h,V,L), T = T(h), and m = m(t). The time t is assumed as 
the independent variable of the problem. The dependent variables are 
velocity V, altitude h, path inclination 8 ,  and lift L. Since the 
number of unknown functions is four, while the number of nonholonomlc 
and holonomic constraints is three, one degree of freedom is left and 
an optimum requirement can be, therefore, imposed. 

After prescribing the initial coordinates ti = 0, Vi = V(0) and 
hi = h(0) and the final coordinates Vf and hf, the variational 
problem is formulated within the general frame of the problems of Mayer 
type discussed in reference 14 as follows: Among all sets of functions 
V ( t ) ,  h(t), 8(t), and L(t) satisfying equations (l), (2), and (8) 
and the prescribed end conditions, to determine that special set which 
minimizes the time tf at final point. 

It is to be noted that, in view of the assumed constancy for the 
p ,  the brachistocronic path is identical with the trajectory mass flow 
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minimizing the propellant expenditure. Furthermore, it must be pointed 
out that, since 6 and fi do not appear anywhere in the side conditions 
of the problem, no requirement can be imposed on the initial and final 
values of 0 and L. The end values for 0 and L will be seen to be 
a mathematical consequence of the set of Euler equations. 

Euler Equations 

A set of variable Lagrange multipliers hl(t), h2(t), h3(t) is 

introduced and the following expression, denominated fundamental function, 
formed : 

3 
F = 1 hkJk 

k = l  

( 9 )  

where J1 to J3 denote, respectively, the first members of equa- 

tions (1) , ( 2 ) ,  and (8). 
the extrema1 properties of the desired optimum trajectory are described 
in terms of four Euler equations, written as follows: 

Since the unknown functions are four in number, 

where Z 1  = V, Z2 = h, Z3 = 0 ,  and 24 = L. 

After simple manipulations the following explicit form is obtained 
for the Euler equations: 

0 = cos O(hlg - h2V) (13) 
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Discontinuity of the Eulerian Solution 

The Euler equation (13) is of special interest, in that it indicates 
that the extremal arc is discontinuous, being generally composed of: 

subarcs of equation: 

COS e = o (15) 

subarcs of equation: 

A1g - A2V = 0 (16) 

A s  8 stands for flight-path inclination, equation (15) represents 
- r (  either a vertical dive or a vertical zoom, that is, 8 = + -. Equa- 

tion (16), on the other hand, corresponds to a condition of motion with 
a continuously varying flight-path angle, as shown in the following 
sections of this report. 

2 

Corner Conditions 

Because of the discontinuous nature of the solution the Erdmann- 
Weierstrass corner conditions must be applied. These are continuity 
conditions which must be verified at every corner of the discontinuous 
extrema1 arc by the following five quantities: 

4 

Since the fundamental function F is independent of both 6 and i, 
the continuity of - aF and - aF is automatically satisfied at all corner 

points. 
quantities of equation (17) leads to: 

ai, a i  
The analogous requirement associated with the remaining three 

(18) 
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The development of equation ( 2 2 )  leads to: 

where the subscript denotes a condition immediately before a cor- 
ner point and the subscript (+) 
point. Thus, the Iagrange multipliers hl and h2 must be continuous 
at junction points. Since thrust, drag, and mass are continuous at all 
time instants, the discontinuity in the path inclination 6 implies 
that, at corner points, the following relationship must hold: 

( - )  
a condition immediately after a corner 

Thus a corner point may lie on the subarc of equation (16) flown with 
variable path inclination. 

Boundary Conditions 

For the problem under consideration, the boundary conditions include 
a number of fixed end point conditions plus a number of natural conditions. 
The latter must be obtained from the general transversality condition, 
which is to be identically satisfied f o r  all systems of variations (6t, 
6zJ) consistent with the prescribed end conditions: 

(k - h l ( Y  - g sin e) - A2V sin 6t + h16V + h26h) = 0 ( 2 3 )  
J i  
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Since 6ti = 6Vi = 6Vf = 6hi = 6hf = 0 and 6t # 0, one deduces that f 
the only natural condition to be satisfied at final point is: 

- m - g sin 0)  - h2v sin eJf = 0 

Notice, however, that equation (24) does not bear any further influence 
on the problem, essentially because the trajectory minimizing the time 
tf is identical with the trajectory minimizing any multiple of the above 
time. The only office of the natural condition (eq. (24)), therefore, 
is to introduce a sort of scale factor for the distribution of Lagrange 
multipliers along the extrema1 path. 

Final velocity is free of choice.- Assume now that the final altitude 

SVf f 0. In such a case, the 
hf is specified and that the final velocity Vf is not prescribed, as 
was previously supposed, but free of choice 
following natural condition: 

A u  = 0 (25) 
8 

must be satisfied in addition to equation (24). 
rewritten as 

The latter can also be 

Energy height prescribed at final point.- If only the energy height 

h e = h + -  v' 
for h and V are not specified, the variations 6hf, 6Vf must satisfy 

the relation: 

is prescribed at the final point while the individual values 
2g 

(6h + E 6V) = 0 
f 

A s  a consequence, the transversality condition (23) yields the following 
natural condition: 

which is to be satisfied in addition to equation (24). 
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Equations (24) and (28) can be solved in terms of the multipliers 
Al and A2 as follows: 

f- 7 

A s  indicated by equation (28) ,  the final point of the efiremal trajectory 
may lie (and, in effect, does lie) on the subarc of equation (16) flown 
with variable path inclination. 

SJBARC FLOWN WI'IR VARIAT3LF: PA'IR INCLINATION 

Optimizing Condition 

The subarc of the extremal solution defined by equation (16) is 
now considered and the process of elimination of the Iagrange multipliers 
is carried out. In this connection, the time derivative of equation (16) 
is calculated, yielding: 

- D  
m 

The f o u r  equations (ll), (12), (16), and (31) can be regarded as memb?rs 
of an algebraic system which is linear and homogeneous in Al, A2, Al, 
and j\2. 
nontrivial solutions for the multipliers and their derivatives is that: 

A s  a consequence, an obvious condition for the existence of 

1 aD 
av 

- - -  sin 8 1 0  

0 0 1  

g -V 0 0  

g sin 0 + - g -v m 
D - T  

0 

= o  ( 3 2 )  
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The development of the determinant (32) leads to the following result: 

+ V2 aD dT = 
T - D - V a V  -&-dh) 

which can also be rewritten as: 

( 3 3 )  

J 

W 
1 

(34) 

1 
5 Since the variational problem has one degree of freedom, one extra rela- 

tion is needed, in addition to equations (I), (2), and (8),  to completely 
characterize the solution. This extra relation is supplied by equa- 
tion (15) for the constant path inclination subarcs and by equation ( 3 3 )  
for the variable path inclination subarc. Thus, the optimizing condi- 
tion is determined. 

Parabolic Polar with Coefficients Depending on Mach Number 

As a particular case a parabolic drag polar is now considered, that 
is, a polar of the form: 

CD = cD~(M) + K(M)c~~ ( 3 5 )  

where CD is the total drag coefficient. Both CDo and K are assumed 
to depend on the Mach number only. 
of drag and lift, the total drag is explicitly written as: 

After accounting for the definitions 

2 2 K L 2  D = Z p S C  M + - - -  
2 Do 7 M2 Ps 

( 3 6 )  

Atmospheric properties.- The atmosphere in which the rocket-powered 
aircraft is flying is represented with the following set of differential 
equations: 

= a  (37) dT - 
ah 
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& = &  
dh 2a 

where 

UR n = l + -  
Q 

P 
PT' 

In the above equations p is the static pressure and R = - the air 
constant. The a variable is supposed to be a known function of the 
altitude. 

Mach number derivatives.- Since the Mach number M = V/a can be 
conceived as a function of velocity and altitude only, tne two partial 
derivatives of M with respect to V and h can be calculated, 
yielding: 

Drag and thrust derivatives. - After accounting for equations (37) 
to (43), the drag and thrust derivatives appearing in equation (33) can 
be determined. The following results are obtained: 



ExTlicit solutions for optimum path.- In consideration of equa- 
tions (44) to (46) , equation (33) ,  which describes the optimum path, can 
be rewritten as: 

(47) 

where po is the sea-level pressure and: 

(49) 

equation (47) can be solved in terms of the ratio of static pressure at 
P altitude to reference pressure - 
PO 

A s  indicated in the section entitled "Hypotheses" the nondimensional 
constant appearing in the equation of motion on the normal to the flight 
path is H = 0 in the case where the variational problem is studied 
without accounting for the induced drag; the associated pressure-Mach 
number relationship is supplied by: 

& = E  
PO A 
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Once the static pressure p is known, the corresponding altitude h 
can be determined from the equations of the standard atmosphere. For 
tropospheric flight the following relationship holds : 

where -r0 is the static temperature at sea level and a the temperature- 
altitude derivative in the troposphere; the two functions A(M) and 
C(M) must be calculated by giving to the constant n the value which 
corresponds to the troposphere. 
(H = 0), equation (53) reduces to: 

When the induced drag is neglected 

With regard to stratospheric flight the static altitude is supplied 
by : 

where an asterisk denotes magnitudes evaluated at the tropopause; the two 
functions A(M) and C(M) must be computed for a = 0 and n = 1, in 
view of the fact that the static temperature T is everywhere a constant 
in the stratosphere. 
above expression reduces to: 

When the induced drag is neglected (H = 0), the 

Comments on solutions.- With a transformation of coordinates from 

the (h,V,L) space into the space, where he = h + v2 - is the 
2g 

so-called energy height, equation (34) can be rewritten as: 
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= o  

L=Constant 

The above expression is the basis for an extension, to the case of a 
variable mass aircraft, of the energy-height method developed in ref- 
erence 10 for an airplane whose mass is ideally constant; the speed for 
best climb is to be determined as the velocity maximizing the power 
excess (available power minus required power) for constant value of the 
energy height he and of the lift L (i .e., of the mass m) . 1 

W 

1 
5 With the graphical-analytical procedure associated with the energy- 

height method, ten or fifteen nonoptimum points must be computed for 
each couple of values of he and L as a preliminary step toward finding 
the optimum operating condition. 
ceding section the optimum operating point is supplied by a straight- 
forward computational technique. 
should be especially evident to the aeronautical engineer in the case 
where systematic design analyses are in order, such as those required 
to study the effect of variations in wing loading or in thrust loading 
on the optimum program of flight. 

With the solutions presented in the pre- 

The advantages of the above procedure 

D 

BOUNDARY-VALUE PROBLEM WHERE INDUCED DRAG I S  NEGLFCTED 

With reference to the case where both the initial and final values 

It consists of determining 
of altitude and velocity (i .e., altitude and Mach number) are specified, 
the boundary-value problem is investigated. 
that combination of subarcs which satisfies a set of prescribed end 
conditions. 

To simplify the discussion, the induced drag is neglected here 
(H = 0). Thus with regard to the altitude-Mach number plane the variable 
path inclination subarc is completely defined by equation (34) for tropo- 
spheric flight and equation (56) for stratospheric flight; the subarc in 
question shall be referred to in the following analysis as 
having indicated with f (M,h) the function which results by calculating 
the difference between left and right members of either equations (34) 

f(M,h) = 0, 

or ( 5 6 ) .  
A 

Notice that the curve f(M,h) = 0 splits the altitude-Mach number 
plane (fig. 1) into two reglons, a region ( a )  bounded by h-axis and by 
the curve 
the curve f (M,h) = 0. 
and ( p )  as high-speed region. 

f(M,h) = 0; and a region ( p )  bounded by the M-axis and by 
The region (a) is defined as low-speed region 

Notice also that fou r  different types of 
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boundary conditions may e x i s t ,  depending upon the r e l a t i v e  pos i t ion  of 
t he  i n i t i a l  point  I and of the f i n a l  po in t  F with respect  t o  the  curve 
f(M,h) = 0. 
extremal t r a j ec to ry .  These solutions are indicated i n  t a b l e  1 and i n  
f i g u r e  l ( a ) ,  where IABF denotes the  extremal a rc ,  composed of subarcs IA, 
AB, and BF. The c e n t r a l  subarc AB is always flown along t h e  curve 
f(M,h) = 0. The i n i t i a l  subarc LA is a v e r t i c a l  dive, if po in t  I belongs 
t o  t h e  low-speed region (a) or  a v e r t i c a l  zoom if  point  I belongs t o  the  
high-speed region ( p )  . Analogously, the  f i n a l  subarc BF i s  a v e r t i c a l  
zoom i f  poin t  F belongs t o  the  low-speed region (a) o r  a v e r t i c a l  dive 
i f  po in t  F belongs t o  the high-speed region ( p )  . 

Four d i f f e ren t  solutions are accordingly found f o r  t h e  

Problems of Conditioned Optimum 

It is  of i n t e r e s t  t o  determine the  optimum paths of f l i g h t  f o r  the  
case where some inequal i ty  i s  imposed on one o r  more of t he  var iab les  
appearing i n  the  va r i a t iona l  problem. 

Tables 2 and 3 and f igures  l ( b )  and l ( c )  supply the  so lu t ion  of 
t h e  minimum time problem under the  l imi ta t ions  
respect ively.  The f i rs t  l imi t a t ion  means t h a t  the  a i r c r a f t  i s  forbidden 
t o  go t o  a l t i t u d e s  below the  i n i t i a l  one. The second l imi t a t ion  means 
t h a t  the search of the  optimum f l i g h t  paths i s  l imited t o  the  category 
of a r c s  i n t e r n a l  t o  t h e  region of space bounded by the two hor izonta l  
planes corresponding t o  t h e  i n i t i a l  and f i n a l  a l t i t u d e s .  A s  shown i n  
appendix A,  t he  e f f e c t  of both of the above l imi ta t ions  i s  equivalent 
t o  introducing add i t iona l  subarcs of equation h = Constant i n t o  the  
composition of the  extremal path.  

h >= hi and h i  5 h 5 hf ,  

Effect of Induced Drag 

When the  so-called induced drag i s  accounted f o r  (H # 0) , the  
f ind ing  of the  extremal a r c  associated with given end conditions becomes 
a l i t t l e  more complicated than i n  the case H = 0. This i s  due t o  t h e  
f a c t  t h a t  equations ( 5 3 )  and ( 5 5 )  are representat ive of a surface i n  the  
h,M,t 
h,M plane.  

space, while equations (54) and ( 5 6 )  character ize  a curve i n  the  

Nevertheless, it can be sa id  t h a t ,  even i n  the  case H 0, a l l  
possible  combinations of subarcs which may a r i s e  i n  solving the  boundary- 
value problem a re  qua l i t a t ive ly  the  same as those covered by f i g u r e  1 
for t he  case H = 0.  I n  t h i s  connection, a t y p i c a l  example of computa- 
t i o n a l  procedure i s  developed i n  the following sect ions of t he  repor t .  
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APPLCCATION OF PREVIOUS THEORY To SPEClFIC CASES 

In this section several numerical analyses are presented for typi- 
cal rocket-powered aircraft configurations. 
in the basic variables of the problem are studied. 

The effect of variations 

Aerodynamic Characteristics 

As a basis for the analyses to follow, two hypothetical aircraft 
are considered. 
and configuration B. 

They are, respectively, denominated as configuration A 

In figure 2 the ratio C D ~ / C ~ ~ ~ ~ ~  is plotted versus Mach number M; 

the Mach number derivative of the above ratio versus Mach number M is 
plotted in figure 3 .  
between configurations A and B lies in the fact that the latter shows a 
much steeper drag rise in the transonic region.2 

As it appears from figure 3 the main difference 

For both configurations the ratio K/qnc is assumed to depend on 
the Mach number 
derivative of the above ratio is Indicated in figure 5. 

M according to the data of figure 4; the Mach number 

Computations for Configuration A 

The hypothetical aircraft denominated as configurationA is con- 
sidered in this section. 
supposed to be such that 

The low-speed aerodynamic characteristics are 

‘Doinc 
= 0.029 and qnc = 0.2. 

Concerning the rocket engine, it is assumed that pVe 
and Ve/Bo = 7. For simplicity the ratio Ae/S is regarded as negligi- 
ble, in view of the qualitative character of the present set of examples. 

Variable path inclination subarc.- Attention is now focused on the 
subarc of the extrema1 solution discussed earlier. 

As a first step, the two functions A(M) and C(M), (defined by 
eqs. (48) and ( 5 0 ) )  are calculated and plotted in figures 6 and 7 for 
both tropospheric flight and stratospheric flight. As a second step, 

2This circumstance affects in a substantial way the opthum technique 
of flight, as it is shown in the following examples. 
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t h e  r e l a t ionsh ip  between, h, M and cp = Hmg/poS is calculated and 
p l o t t e d  f o r  tropospheric f l i g h t  (eq. (53) ) and s t ra tospher ic  f l i g h t  
(eq.  ( 5 3 ) )  i n  figure 8. 

I n  the case where the  var ia t iona l  problem is solved without 
accounting f o r  t h e  induced drag, the condition H = 0 must be imposed. 
A s  a consequence, t he  var iab le  path inc l ina t ion  subarc is  represented 
by t h a t  curve h(M) of figure 8 which corresponds t o  cp = 0. 

If, on t h e  other  hand, t h e  induced drag i s  accounted f o r  and if 
( f o r  instance)  the  equation of motion on the  normal t o  the  f l i g h t  path 
i s  wr i t t en  as L - mg = 0, then t h e  condition H = 1 must be imposed. 
It i s  t o  be noted, however, t h a t  the mass of t h e  aircraft i s  a l i n e a r  
func t ion  of t i m e ;  as a consequence, t he  parameter cp i s  a l s o  l i n e a r l y  
va r i ab le  with time. From t h i s  consideration it follows t h a t  t h e  a c t u a l  
curve h(M), which i s  representat ive of t h e  optimum technique of f l ight 
i n  t h e  (h,M) plane,  does not follow any of t he  
sketched i n  figure 8, bu t  r a the r  crosses them ( i n  the  sense qf decreasing 
values of 

Figure 8(a) shows that the  e f f e c t  of the  induced drag on t h e  optimum 

The same e f f e c t ,  however, may become 

cp = Constant curves 

9 )  as the  f l i g h t  program develops. 

altitude-Mach number d i s t r i b u t i o n  i s ,  from an engineering poin t  of view, 
negl ig ib le  f o r  tropospheric flight. 
important f o r  f l i g h t  i n  t h e  s t ra tosphere ( f i g .  8 ( b ) )  depending upon the  
value of the  instantaneous wing loading ( f o r  a given t h r u s t  loading) and 
upon the  f l i g h t  Mach number. 

Extrema1 a r c  f o r  one spec i f i c  s e t  of boundary conditions.- The 
following set of end conditions i s  now considered: 
'pi = 0.03, + = 1.4,  hf = 35,332 f t .  The optimum path  i s  inves t iga ted  
under the  l imi t a t ion  

M i  = 0.4, h i  = 0, 

h i  <= h 5 hf.  

I n  accordance with t h e  data of figures l(c) and 8(a) t h e  extrema1 
a r c  includes one i n i t i a l  subarc IA flown i n  l e v e l  f l i g h t ,  one c e n t r a l  
subarc AB flown with var iab le  path inc l ina t ion  and var iab le  a l t i t u d e ,  and 
one f i n a l  subarc BF', a l s o  flown i n  l e v e l  f l ight.  A computation procedure 
i s  now developed, spec ia l ly  sui table  t o  t h e  present  se t  of end conditions 
( f l i g h t  condition of type I, 

motion show t h a t  t he  path of the  a i r c r a f t  can be complexly described i n  
terms of t he  three  var iab les  h, M, and cp = Hmg/poS. For t h e  case of 
l e v e l  f l i g h t ,  t he  d i f f e r e n t i a l  re la t ionship  t o  be in tegra ted  is: 

h i  S; h S hf)  . 
I n i t i a l  subarc IA.- Simple transformations of t h e  equations of 
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where the additional constraint p = Constant is to be considered. 
For the initial conditions of the preceding section, one must assume 
P = Pi = Po* 

W 
1 
1 
5 

Corner point A.- In consideration of the fact that corner point A 
belongs to both subarcs LA and AB, and that its altitude is known 
(hA = 0), the two remaining coordinates MA and 'pA must be found as 

follows: the curve 
tion ( 5 8 )  started at point I, must be intersected with the curve 'p(M) 
which results by imposing the condition into equation (47): 

cp(M), which results by forward integration of equa- 

p/po = 1 

' p = i 7  A - B  (59) 

Both equations ( 5 8 )  and (59) are plotted in figure 9, where the corner 
point A is shown ('pA = 0.0291, MA = 0.557). 

\ 

Central subarc AB.- For the subarc AB of the extrema1 path the equa- 
tions of motion must be considered, subject to the constraint represented 
by equation (47). 

After laborious transformations (omitted for the sake of brevity) 
the following differential relationship may be obtained between Mach num- 
ber and altitude: 

where 
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2 A - - -  P B  

P 
G2 = -ye) Po 2 

A - - B  
PO 

G4 
&[%! 2 B 

PO - 4 
A forward integration of equation (60) started at point A ,  yields the 
Mach number-altitude distribution along the subarc AB (fig. lO(a)). 
integration process must be discontinued at the altitude 
the h(M) 
is supplied by: 

The 
Once hB = hf. 

relationship is known, the distribution of mass (fig. 10(b)) 

The coordinates of corner point B are the following: % = 0.89, 
'$ = 0.0210, hg = 35,332 ft. 

Final subarc BF.- For the particular example under consideration, 
the final subarc BF is to be flown at constant altitude. The Mach number- 
mass distribution is obtained by integrating equation ( 5 8 ) ,  subject to 
the constraint p = pf .  

Both the subarc BF and the complete trajectory IABF are represented 
in the altitude-Mach number plane and in the mass-Mach number plane in 
figure 10. 
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Computations for Configuration B 

The hypothetical aircraft designated as configuration B is now con- 
sidered. The following nondimensional parameters characterize the air- 
craft and the engine: = 0.029, Kine = 0.2, Ve/ao = 7, Ae/S 2 0. 'Doinc 

Unless stated otherwise, the thrust loading is assumed such that 
pVe/poS = 0.02 and the so-called induced drag is neglected. 
parisons between configurationA and configuration B are made on a zero- 
lift drag basis. 

All com- 

General remarks on variable path inclination subarc.- The important 
function A(M), which is defined by equation (48) , is plotted in fig- 
ure 11 for both tropospheric and stratospheric flight. 
altitude4ach number distribution (eqs. (54) and ( 5 6 ) )  is indicated in 
figure 12. 

In turn, the 

A comparison between figures 8 (induced drag neglected, 
12 emphasizes the main difference between configurations A and B. 
figuration A (mild drag gradient in the transonic region) yields a single- 
valued relationship 
the transonic region) yields a multiple-valued relationship 
altitude interval between 55,000 and 78,000 feet. 

9 = 0) and 
Con- 

M(h) , while configuration B (steep drag gradient in 
M( h) in the 

More specifically, associated with configuration B (fig. 12) are 

By 
three branches of the solution, a subsonic branch (solid line), a tran- 
sonic branch (dotted line), and a supersonic branch (solid line). 
means of Green's theorem, as in reference 6 ,  it can be proved that the 
transonic branch is associated with maximum time solutions, while both 
the subsonic and the supersonic branch are associated with minimum time 
solutions. 

The next question is then to establish whether climbing must be 
performed at subsonic or supersonic speed or by using a combined subsonic- 
supersonic technique of flight. In the latter case, it is relevant to 
determine the special altitude at which the rocket-powered aircraft is 
to be transferred from the subsonic to the supersonic branch of the 
solution. 

Effect of thrust loading on variable path inclination subarc.- To 
investigate the effect of variations in thrust loading on the solutions, 
three values are considered for the parameter 
0.02, and 0.03. "he associated Mach number-altitude distribution for 
the subsonic and supersonic branches of the solution is illustrated in 
figure 13. 

BVe/poS, namely 0.01, 
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In both instances, the effect of increasing the thrust is to increase 
For the subsonic branch this the optimum Mach number at a given altitude. 

increase in the Mach number is decidedly more pronounced at the lower alti- 
tudes, becoming rather slight at the higher altitudes. 
domain, the increase is almost uniform through the given Mach number and 
altitude range. 

In the supersonic 

Extrema1 path for one specific set of boundary conditions.- The 

hf = 70,000 ft 
following set of end conditions is now considered: 

mig/S = 60 lb ft-2; % = 2, 

Mi = 0.545, 
and the limitation 

hi = 0, 

hi 4 h 5 hf is imposed. 

The end conditions are such (fig. 14) that the initial point I and 
the corner point A are coincident in the altitude-Mach number plane 
I = A .  Thus, the amplitude of the initial subarc IA shrinks to zero and 
the optimum path reduces to a composite subarc ACDB, followed by a level 
flight subarc BF. 

In turn, the composite subarc ACDB embodies three parts, one variable 
path inclination subarc AC flown along the subsonic branch of equation ( 5 2 ) ,  
one variable path inclination subarc DB flown along the supersonic branch 
of eqiiation (52), and one transition subarc CD. 

With regard to the transition subarc CD, the present analysis is 

hT 
circumscribed here to only those subarcs which are flown in level flight. 
For the latter, the best transition altitude 

n(hr) = 0, where the function Cl is defined by equation (BX)) of 
appendix B. 

is to be such that 

= 58,800 ft and this 
(hT)opt 

Numerical computations show that 

fact is clearly indicated in figure 15 where the function R is plotted 
versus the transition altitude hT. 

When induced drag is accounted for, the extremal path modifies. 
Admitting, for simplicity, that the optimum transition altitude does not 
change because of induced drag effect, the,snalysis indicates that the 
new extremal arc is the trajectory IA'C'D'B'F of figure 14. 

The induced drag causes only a minor shifting of the optimum dis- 
tribution of speed with respect to the other distribution calculated for 
zero induced drag. This result is largely due to the relatively low 
initial wing loading considered in the preceding section. Considerably 

of 100 lb ft-2. 
~. larger effects must be expected for initial wing loadings of the order 



26 

Comparison between optimum t r a n s i t i o n  subarc and neighboring paths.-  
I n  order t o  study the  e f f e c t  of deviat ions of the  a c t u a l  t r a n s i t i o n  a l t i -  

I 

tude with respect  t o  the  optimum value predicted i n  the  previous sect ion,  
the  following example i s  car r ied  out .  

The i n i t i a l  condition of f l i g h t  i s  assumed t o  be such t h a t  h i  = 0, 
M i  = 0.545, 
with t h e  corner p o i n t A  since I i s  located on t h e  subsonic branch of t he  
va r i ab le  path inc l ina t ion  subarc ( f i g .  1 2 ) .  

mig/S = 60 l b  ft-2, and t h e  i n i t i a l  point  I i s  i d e n t i c a l  

Four d i f f e r e n t  f i n a l  conditions of f l i g h t  are conside-red; however, 
a l l  of them a r e  chosen i n  such a way t h a t  the  f i n a l  po in t  F is  located 
on the  supersonic branch of t he  var iab le  path inc l ina t ion  subarc. 
a consequence, t he  f i n a l  point  F and the  corner point  B a r e  i d e n t i c a l .  

B = F)  are considered ( f i g .  12)  
including one climbing maneuver AC performed along the  subsonic branch 
of the  var iable  path inc l ina t ion  subarc and one climbing maneuver DB 
performed along the  supersonic branch of t he  var iab le  path inc l ina t ion  
subarc.  Intermediate between the  above two climbing subarcs i s  one 
t r a n s i t i o n  path CD, which i s  assumed t o  occur a t  constant a l t i t u d e  

A s  

Paths of  t he  form IACDBF (I  A, 

hT. 

I n  f igure 16 the  time tf necessary t o  reach the  des i red  f i n a l  
condition of f l i g h t  i s  p lo t t ed  as a funct ion of the  a c t u a l  t r a n s i t i o n  
a l t i t u d e  hT. From t h i s  graph the  conclusion i s  reached t h a t  a reason- 
ab le  deviation i n  t r a n s i t i o n  a l t i t u d e  with respect  t o  the  optimu? value 

tf.  The does not cause a subs t an t i a l  change i n  t h e  t i m e  
(hT)opt 
t r a n s i t i o n  problem, therefore ,  i s  not a c r i t i c a l  one f o r  rocket-powered 
a i r c r a f t  . 3 

REMARKS ON DISCONTINUOUS NATURE OF SOLUTIONS 

It has been seen i n  the  preceding analyses t h a t  there  ex i s t  d i s -  
cont inui t ies  i n  the  path inc l ina t ion  a t  the  corner po in ts  where the  
v e r t i c a l  dive or v e r t i c a l  zoom subarcs j o i n  the  var iab le  path inc l ina-  
t i o n  subarcs and where the  hor izonta l  t r a n s i t i o n  subarcs j o i n  the va r i -  
ab le  path inc l ina t ion  subarcs. These d i scon t inu i t i e s  are a mathematical 

3Computations, omitted f o r  the  sake of brev i ty ,  have been car r ied  l 

out  f o r  the case where the  induced drag i s  accounted f o r .  
t i v e  conclusions a re  e s s e n t i a l l y  the  same as i n  the  case where the  
induced drag i s  neglected. 

The qua l i ta -  
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consequence of hypothesis (4), which neglects the  cen t r ipe t a l  component 
of t h e  accelerat ion.  O f  course, such d iscont inui t ies  are not physical ly  
possible  during ac tua l  f l i g h t  operations. Thus, i n  any appl ica t ion  of 
these  methods, t he  ac tua l  f l i g h t  path must be f a i r e d  i n  the  v i c i n i t y  of 
each corner po in t  so as t o  continuously j o i n  the d i f f e ren t  subarcs. 
Such f a i r i n g s  should be consistent with the s t r u c t u r a l  capaci ty  of t he  
a i r c r a f t  and with the  physiological a b i l i t y  of the  p i l o t  t o  withstand 
acce lera t ion .  Moreover, they should be consis tent  with the  thrust-drag 
cha rac t e r i s t i c s  of the  a i r c r a f t .  

CONCLUSIONS 

The climbing technique f o r  a rocket-powered a i r c r a f t  i s  analyzed 
from the standpoint of minimizing the  time required t o  f l y  from one com- 
b ina t ion  of speed and a l t i t u d e  t o  another.  It i s  shown t h a t  t he  t o t a l i t y  
of extrema1 a r c s  includes a number of constant path inc l ina t ion  subarcs 
and a number of var iable  path inc l ina t ion  subarcs.  

Concerning the la t ter ,  solutions i n  a closed form a re  developed. 
Depending upon the  type of drag polar, the  Mach number-altitude r e l a t ion -  
ship can e i t h e r  be of t he  s ing le  valued type or of the  multiple-valued 
~ y p e .  I n  t h i s  second case three  branches general ly  e x i s t  f o r  the  solu- 
t i on ,  a subsonic branch, a transonic branch which i s  of no i n t e r e s t  for 
f l i g h t  operations,  and a supersonic branch. 

I-- 

The optimum a l t i t u d e  f o r  the t r a n s i t i o n  from the  subsonic t o  t h e  
supersonic branch of the  solut ion i s  determined. With regard t o  t h e  
boundary-value problem, severa l  numerical examples are presented, having 
the e f f e c t  of i l l u s t r a t i n g  the general procedures developed i n  the  present  
repor t .  

Purdue University, 
Lafayette, Ind.,  November 8, 1957. 



APPENDIX A 

ON 'IRE COMPOSITION OF EXTREMIL PATH WHEN INEQUALITY OF 

FORM hi 5 - h 5 hf IS IMPOSED ON VARIATIONAL PROBLEM 

In the main text it was stated that, if the inequality hi 2 h hf 
is imposed upon the class of paths which are subject to the variational 
investigation, additional subarcs of the form h = Constant are intro- 
duced into the composition of the extrema1 arc. 
supported with the following process of reasoning. 

This statement is now 

When, in a certain variational question, one of the variables is 
subject to some inequality which results from the characteristic con- 
ditions of the problem, the inherent information is to be translated 
into the setting of the question at the very beginning, otherwise the 
solution may not be consistent with the desired limitation. In this 
connection, it is of interest to exploit the artifice of parametric 
representation of the variable involved in the inequality. 
nique was originally introduced in reference 15 in a problem of optimum 
burning program; its main effect consists in treating a constraint 
involving an inequality under the same analytical procedures developed 
for a constraint represented by an equality. 

Such a 'tech- 

The flight altitude h is represented as a function of a parameter 
q (fig. 17) where 

-m 6 q 5 ql the altitude is h = hi 

q2 <= q 5 the altitude is h = hf 

ql( q 5 q2 a one-to-one correspondence is assumed between h and 7 .  

With the above scheme q is considered as an independent parameter, 
as far as the flight altitude is concerned, and is allowed to vary between 
-03 and 0 0 .  The variable h becomes a dependent quantity, varying between 
hi and hf according to the scheme shown in figure 17. 

Notice that a = 0 represents either a level flight condition 
dn 

ah h = hi or a level flight condition h = hf. On the other hand, - # 0 
d? 

is representative of any other operating condition of the aircraft at 
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altitudes which are intermediate between the two limiting ones. Notice 
also that q 
uting to it any special physical meaning. 

is only a parameter and that there is no necessity of attrib- 

The time derivative of the flight altitude is written as: 

and, as a consequence, the fundamental function F modifies as follows: 

The independent variable of the variational problem is the time t. The 
dependent variables are now V, 7 (in place of h), 8, and L. The 
three Euler equations associated with V, 8, and L are still supplied 
by equations (ll), (l3), and (14). On the other hand, the Euler equa- 
tion associated with the new variable 51 is written as follows: 

q:) - g = 0 

where : 

From equations (A3)  to (A6) one obtains: 

,ah dh 

(A3 1 



Equation (A7) splits into the following two solutions: . 

Equation (A8) is identical with equation (E).  
yields the two extra subarcs 

device of parametric representation illustrated in figure 17. 

Equation (Ag), in turn, 
h = hf, as is clear f rom the h = hi and 
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I n  t h e  main t e x t  t h e  t r ans i t i on  problem was posed: For c e r t a i n  
types of drag polars  t he  var iable  path inc l ina t ion  subarc may s p l i t  i n t o  
two usefu l  port ions,  t h a t  i s ,  a subsonic branch and a supersonic branch. 
This circumstance causes the  following question t o  arise: What is  t h e  
b e s t  t r a n s i t i o n  maneuver (from a t i m e  s tandpoint)  i n  order t o  t r a n s f e r  
the  a i r c r a f t  from the  subsonic branch t o  the  supersonic branch of t he  
so lu t ion?  

In  the  present  appendix an attempt i s  ca r r i ed  out  t o  supply an 
engineering answer t o  the  above problem. The ana lys i s  i s  circumscribed 
from start  t o  t h e  c l a s s  of t r ans i t i on  subarcs which a r e  flown i n  l e v e l  
f l i g h t .  Induced drag e f f e c t s  are neglected. 

Assume t h a t  t he  boundary conditions are as i n  figure 18, the  i n i t i a l  
po in t  I corresponding t o  low subsonic speed i s  located,  i n  the  veloci ty-  
a l t i t u d e  plane, on the  l e f t  with respect t o  the  subsonic branch of t h e  
so lu t ion  with var iab le  path incl inat ion;  t he  f i n a l  po in t  F corresponding 
t o  high supersonic speed is  located on the  r i g h t  of the supersonic branch 
of the  so lu t ion  with var iab le  path inc l ina t ion .  
l imi t a t ion  
t o r i e s  IACDBF. 
subarcs : 

Assume also t h a t  t he  
hi 5 h 5 hf is  imposed and consider t he  family of trajec- 

Each element of the above family i s  composed of f ive 

(1) Subarc I A  flown i n  l e v e l  f l i g h t  a t  h = hi 

(2) Subarc AC flown along the subsonic branch of t h e  so lu t ion  with 
var iab le  path inc l ina t ion  (eq. (52) ) 

( 3 )  'Bansi t ion subarc CD flown i n  l e v e l  f l i g h t  a t  h = + 
(4)  Subarc DB flown along the supersonic branch of the  so lu t ion  

with var iab le  path inc l ina t ion  (eq. ( 5 2 )  ) 

( 5 )  Subarc B F  flown i n  l e v e l  f l i g h t  a t  h = hf 

It i s  c l ea r  t h a t ,  f o r  the previously defined family of t r a j e c t o r i e s ,  
the  time 
t i o n  t f ( h T )  of t h e  t r a n s i t i o n  a l t i t u d e  hT. It follows t h a t  t he  optimum 
t r a n s i t i o n  subarc i s  the  one f o r  which the  following r e l a t i o n  of t h e  
ordinary theory of maxima and minima i s  s a t i s f i e d :  

tf necessary t o  reach the desired f i n a l  po in t  i s  only a func- 
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- -  - 0  d t  f 

*T 

Time I n t e r v a l  from I n i t i a l  Point  t o  F i n a l  Point  

Simple transformations of equations (l), (2), and ( 5 )  y i e l d  t h e  
following d i f f e r e n t i a l  re la t ionship  ( the  induced drag i s  neglected) : 

# =  = #(h,V) 
T - Do 

whose corresponding i n t e g r a l  form is: 

.'=s ( + d h + # d V )  
IACDBF 

The derivat ive of t he  t i m e  
hT i s  supplied by: 

tf with respect  t o  t h e  t r a n s i t i o n  a l t i t u d e  

and, as a consequence, t h e  condition ( B l )  i s  equivalent to :  
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Application of Theorem of Derivation Under Integral Sign 

The line integral (€36) can be broken into five parts, each associated 
with a different subarc of the family of trajectories under consideration: 

= O-'IA + %C + wCD + %B + ?BF (B9) 

= s, Q dV 

n j ( $  dh + 0 dV) O-'AC = AC 

A change in the transition altitude hT causes a change in the 
integrals (B11) to (B13) because the limits of integration and/or the 
integrand function are affected. 
obtained: 

The following results are consequently 



34 

From equations (B8) and (B13) to (Bl9) the following fundamental result 
arises : 

I 

The above equation implicitly defines the optimum transition height 
and it must be solved, in general, by approximate methods. i "T> opt 

Application of Green's Theorem 

The result represented by equation (B20) can also be achieved by 
means of a radically different technique based on the use of Green's 
theorem. 

Consider (fig. 18) two alternate trajectories, namely the path 
IACDBF whose transition subarc CD is flown at altitude 
IAC'D'BF whose transition subarc C'D' is flown at altitude 

For the former trajectory the function w 

hT and the path 

is supplied by equation ( B 6 ) .  
htT = hT + AhT. 

With regard to the latter trajectory the function w is given by: h 

(I$ dh + ' dV) 
IAC ' D ' BF 
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The increment DLU associated 
altitude can now be expressed 

with the increment AhT of the transition 
in the form of a cyclic integral: 

In turn, the above line integral can be transformed by means of Green's 
theorem into a surface integral associated with the area a bounded by 
the clockwise circuit CC'D'DC: 

Consider, now, a set of smaller and smaller increments 
limit AhT shrinks into the infinitesimal increment ahT; as a conse- 
quence, hu tends to dw, the latter quantity being supplied by: 

%. In the 

The condition (B8) is, therefore, equivalent to: 

r 7 

Since the above line integral is to be computed 
the following relationship holds: 

0 (B25 

at constant altitude, 
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The combination of equations (B25) and ( ~ 2 6 )  yields once more the funda- 
mental equation: 

The same result has been obtained by the writers starting from the 
Erdmann-Weierstrass corner conditions. 
for brevity. 

The demonstration is omitted 
W 
1 
1 
5 
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Subarc 
IA 

W 
1 
1 
5 

Subarc 
AB 

Flight 
Zonditions 

9 = -fi/2 

9 = -n/2 

e = n/2 

I f(M,h) = 0 

f(M,h) = 0 

f(M,h) = 0 

I1 U 

P I11 

U 

U 

I V  P 

TABLE: 1. - COMPOSITION OF EXTREMAL ARC WHEN NO 

P e = x/2 f(M,h) = 0 

LIMITATION IMPOSED ON F L I G H T  PATH 

where where Subarc 
BF 

e = 4 2  

e = fi/2 

e = fi/2 

e = 4 2  

TABLE 2.- COMPOSITION OF MTREMAL ARC UNDER L I M I T A T I O N  h >, hi 

F l igh t  where 

I 

I 

I1 

I 

P 

U 

I U 

I V  
I I 

Subarc 
IA 

h = hi 

h = h  i 

e = n/2 

e = x/2 

Subar c 

AB 
f(M,h) = 0 

f(M,h) = 0 

f(M,h) = 0 

f(M,h) = 0 

1 
Subarc I 

BF I 1 
e = - 4 2  

e = fi/2 

e = fi/2 

e = -x/2 
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Fl igh t  
3 ondi t i on 

I 

I1 

I11 

IV 

TABU 3 . -  COMPOSITION OF EXTREMAL A R C  UNDER 

LIMITATION h i  5 h hf 

Region 
where 

point I 
belongs 

Region 
where 

point F 
belongs 

Subarc 
I A  

h = hi 

h = h i  

e = ~ [ / 2  

e = ~ [ / 2  

Subarc 
AB 

f(M,h) = 0 

f(M,h) = 0 

f(M,h) = 0 

f(M,h) = 0 

Subar c 
m 

h = hf 

8 = n/2 

e = n/2 

h = hf 

b 
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- 
(a) Configuration A. 

- 

(b) Configuration B. 

. 

Figure 2.- Zero-lift drag coefficient as a function of Mach number. 
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(a) Configuration A. 

(b) Configuration B. 

Figure 3.-  Mach number der ivat ive of the  z e r o - l i f t  drag coef f ic ien t  as 
a function of  the Mach number. 
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. ..- 

Figure 4.- Ratio of induced drag coef f ic ien t  t o  square of l i f t  coef f i -  
c ien t  as a function of Mach number (configurations A and B ) .  

- 
1.5 

I 

d&l 
dM 

Q! 

( 

- 
M 

c 

Figure 5 . -  Mach number der iva t ive  of r a t i o  of induced drag coef f ic ien t  
t o  square of l i f t  coef f ic ien t  as a funct ion of the  Mach number 
(configurations A and B) . 
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(a) Tropospheric f l i g h t .  
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(a) Tropospheric flight. 

(b) Stratospheric flight. 

Figure 8.- Relationship between altitude, Mach number, and parameter cp at points of the subarc flown with variable path inclination f o r  con- 
figuration A. 
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(b)  Mass-Mach number plane. 

Figure 10.- Par t icu lar  e.xtremal t r a j e c t o r y  f o r  configuration A i n  
tropospheric f l i g h t .  



(b) Stratospheric flight. 

Figure 11.- The function A(M) for configuration B. 



L n  
rl 
rl 

4 



52 

b 

LU 1.L 0-- 0.5 M 

(b)  Supersonic branch. 

Figure 15.- Effec t  of t h r u s t  loading on Mach number-altitude r e l a t i o n -  
sh ip  a t  points of two branches of the  subarc flow with var iable  path 
inc l ina t ion  (configuration B; induced drag neglected) . 
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C 
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Figure 15.- 

60 65 70 75 
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(ftl 

Determination of optimum t r a n s i t i o n  a l t i t u d e  (configura- 
t i o n  B; induced drag neglected) .  

Figure 16.- Ef fec t  of t r a n s i t i o n  a l t i t u d e  on time necessary t o  reach 
desired f i n a l  point  (configuration B; induced drag neglected) . 

. 
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